A New Algorithm for Privacy-Preserving Horizontally Partitioned Linear Programs
نویسندگان
چکیده
منابع مشابه
Privacy-preserving horizontally partitioned linear programs
We propose a simple privacy-preserving reformulation of a linear program whose equality constraint matrix is partitioned into groups of rows. Each group of matrix rows and its corresponding right hand side vector are owned by a distinct private entity that is unwilling to share or make public its row group or right hand side vector. By multiplying each privately held constraint group by an appr...
متن کاملPrivacy-preserving horizontally partitioned linear programs with inequality constraints
In this paper we solve the open problem, finding the solutions for privacy-preserving horizontally partitioned linear programs with inequality constraints, proposed recently by Mangasarian, O.L. ( Privacy-preserving horizontally partitioned linear programs, Optim Lett 2011, to appear).
متن کاملAn inference-proof approach to privacy-preserving horizontally partitioned linear programs
Mangasarian (Optim. Lett., 6(3), 431–436, 2012) proposed a constraints transformation based approach to securely solving the horizontally partitioned linear programs among multiple entities—every entity holds its own private equality constraints. More recently, Li et al. (Optim. Lett., doi:10.1007/s11590-011-0403-2, 2012) extended the transformation approach to horizontally partitioned linear p...
متن کاملA Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data
Data mining can extract important knowledge from large data collections, but sometimes these collections are split among various parties. Data warehousing, bringing data from multiple sources under a single authority, increases risk of privacy violations. Furthermore, privacy concerns may prevent the parties from directly sharing even some meta-data. Distributed data mining and processing provi...
متن کاملPrivacy Preserving Naive Bayes Classifier for Horizontally Partitioned Data
The problem of secure distributed classification is an important one. In many situations, data is split between multiple organizations. These organizations may want to utilize all of the data to create more accurate predictive models while revealing neither their training data / databases nor the instances to be classified. The Naive Bayes Classifier is a simple but efficient baseline classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: 2314-4785,2314-4629
DOI: 10.1155/2021/6651480